incrospect O

technology

TECHNICAL INSIGHTS

Importing and Exporting
Python Modules

PVVVVLDDD
DO DY

VOV
CLDRIIDLY

WOLLVVWY
WOWWVVDY

WOWWLVVYY
L)
™ Rx

© Introspect Technology, 2019
Published in Canada on October 7, 2019

INTROSPECT.CA

-A
INErospect
_/ Gechnology

TABLE OF CONTENTS

Table of Contents

INEFOAUCTION ettt bt bbbt bbbt b bbb tse b basssnes 3
Importing Modules iNt0 @ TESt PrOCEAUIEcreerieeieteieieeirieeisieseiseesesseessesessssesessasesesssssssssssssnns 3
Using the PythonModule COMPONENT Class ...ttt 3
Manually IMPOrting PYTRON FIES ...ttt sttt sttt 10
EXPOrting @ TESt PrOCEAUIE ...ttt ssssssessssssssssssssssssessssssessssssens n
Using the TestAsPythonScript COMPONENT CIASS ...ttt sttt 11
Manually EXporting COMPONENT CIASSEScrvurieerireriiesisesiseessessss sttt st st sssnsssnns 14

mporting and Exporting Python Modules
INTROSPECT.CA

.A
@OSPGCU INTRODUCTION
Gechnology

Introduction

It is sometimes useful to import external Python modules into Test Procedures developed within the
Introspect ESP Software. Similarly, it might be useful to export test methods or entire Test Procedures
from the Introspect ESP Software for use in external Python scripts. This Technical Insights brief describes
ways to achieve both of these requirements.

Importing Modules into a Test Procedure

USING THE PYTHONMODULE COMPONENT CLASS
BASIC CONCEPT

The Introspect ESP Software has a built-in component class called PythonModule, and this is the
recommended way of importing external Python functions or modules into Test Procedures being
executed from within the Introspect ESP Software. This section describes the basic concept of this
component class and illustrates real-life examples of how it is used.

A PythonModule component can be instantiated by adding it to the Introspect ESP Software Test
Procedure using the "Add Component” menu. Note that this component class is listed under the “utility”
category of the menu as shown in the following image.

Add Component

£ t-VYScan Represents a Python module (file of Python code)

| @-advanced that you want to use in the Test Procedure (or in other components) .

mipi The '.py’ file for this module should be named the same as this component
Bui (e.g. if the component is named 'fred', the file should be 'fred.py').
T The '.py' file is expected to be in the Params folder of the Test.

>

In the GUI, double-clicking on the component name will open an editor
i application allowing you to wiew and edit the Python code.
= utilty The editor application is specified in the GUI ".ini" file

.. CommandFileRunner by the preference "preferredPythonCodeEditor”.
Coordinator
.CsvReader Attributes:
fileName - name of the Dython file
DataFile
Methods :
- DataRecord run() - execute the Dython code from the module file
DataStore and import the names defined in that file.
. EmailMessage
.- Function Attributes:
HimIReportWiter fileName - Wame of the Dython file. Double-click the component name to edit
his ...ditor™)
- PassFailScr =
PlotCroat R wantImportAll - auto-import all symbols from this module?
reator
Methods :
- PlotCreatorBasic run{] - execute the Python code in the _py file
- PythonModule
ResuttFolderCreator
- Shmoo
Subprocess
- TestAsCompanent
Test AsPython Script w
Add Component Cancel
orting and Export 19 Python Modules

INTROSPECT.CA

incrospect

technology

When the PythonModule component is instantiated, the Introspect ESP Software takes a couple of
automated actions. First, it adds the module to the Components tab as is the case with all other
instantiated components. Second, it creates a blank .py file inside the Params sub-folder of the Test
Procedure folder in Windows. The name of this file matches the name of the component class that was
instantiated. That is, referring to the two following images, the software creates a module called
pythonModulel and creates a corresponding file called pythonModulel.py.

File Edit IESP/SV3C 32C12G Wizards ControlPanels Tools Results Help

Params Log Results
Components pythonModule 1 properties (class: PythonModule)
gﬁﬁalﬁi?cé((:‘o;ﬁig fileName pythonModule 1.py
prinentfiodie wantimportAll True
want Import All
Should all of the symbols/names functions and classes) from this module be autoimported into the global namespace
Add o Corfig when the "run" method is called?
"ER
File Home Share View ~ @)
[B
J Cut Moveto~ | ¢ Delete ~ v FE select all
W-! Copy path 6= Select none
Pin to Quick Copy Paste - New Properties .
o b [#] Paste shorteut Sy ErEE folder p, & = Invert selection
Clipboard Organize New Open Select
« v 1T * TestPythonModule_2019-10-06_1605 * Params v U Search Params »p
~ [Name Date madified Type Size
& pythonModulel.py 2019-10-06 3:56 PM PY File 1KB
& testProcedure.py 2019-10-06 4:05 PM PY File 1KB

v

2 items j =

N\

INGrospect IMPORTING MODULES INTO A TEST PROCEDURE

_/ Gechnology

By default, the pythonModulel.py file is blank, and the Introspect ESP software typically launches a code
editor to allow the user to edit this file. This is when external code can be added. In the following
example, we show two function declarations: one to create a custom print method and the second to
compute a Fibonacci sequence. As can be seen, any Python code can be placed in this file, including
function declarations, function calls, and library imports.

pythonModulel.py
#!/usr/bin/env python

def myprint():
print ("hello")

def myFibonacciSeries(n):
a, b=20, 1
while a < n:
print(a, end=' ")
a, b =Db, atb
print ()

After saving the pythonModulel.py file, we can go back to the Introspect ESP Software and never have
to worry about the source code anymore. Instead, we import the file’s contents by adding the call
pythonModulel.run() in the main Test Procedure pane. Once the file is imported this way, we can call
any function that was declared inside it. For example, the following image shows how to call the
Fibonacci Series calculator that was declared in the above example; and the image after it shows the
execution log of the Test Procedure, confirming that the external Python file was indeed imported and
that the Fibonacci Series function was executed.

orting and Exporting Python Modules

INTROSPECT.CA

N\

incrospect

Gechnology

N

IMPORTING MODULES INTO A TEST PROCEDURE

Introspect ESP (v 3.

SV2C_8C320)

) - TestPythonModule_2019-10-06_

File Edit [ESP/SV2C _8C32G Wizards ControlPanels Tools Results Help

Params Log Results
Components pythonModule1 properties (class: PythonModule)
bonecie) fleHarme pythonModuie 1 py
wart Import All True
fileName
Name of the Python file. Double-click the component name to edit this file. (The editor application is specified in the
Add Remave Corfig "ini" file by the preference "prefemedPythonCodeEditor")
Test Procedurs

1 pythonModulel.run()

2 myFibonacciSeries (1000)
3

4

Introspect ESP (v 3.6.7) - TestPythonModule_2019-10-06_1605 (SV2C_BC32G) =]
File Edit [ESP/SV2C 8C32G Wizards ControlPanels Tools Results Help

Params Log Resits

*#4 Logging to file: C:\Users‘\mmhaf\Documents\Introspect\Tests\Scripts\InternalTest\Pinecree
\TestPythonModule 2019-10-06_l&05\Logshlog_2019-10-06_1635_34.txt
www

Auto-connect disabled. Will need a manual connection

Starting Test 'TestPythonModule 2019-10-06_1605'
2019-10-06_1635_34

Components used by Test Procedure: [pythonModulel]
IESP not used by Test Procedure

D 112358 13 21 34 55 B9 144 233 377 €10 9387
Test finished

Test toock 9 milliseconds

port and Expor
INTROSPECT.CA

incrospect

technology

PLACING A PYTHON FILE IN THE PARAMS FOLDER

If you want to import an already existing Python file without having to paste its contents into a blank
file, then you can simply place this file in the Params sub-folder of your target Introspect ESP Software
folder. When you do so, the Introspect ESP Software automatically creates an instance of the
PythonModule component class. In the following example, we place a file called
mySecondPythonModule.py in the Params folder as shown in the following image.

"En
File Home Share View ~ @
[N =/ .
J & Cut eMoveto™ X Delete v & FE select all
W Copy path 8= Select none
Pin to Quick Copy Paste E > m] New Properties . R
- [#] Paste shortcut Copvic 1 Rename Gk - « = Invert selection
Clipboard Organize New Open Select
&~ v * TestPythonModule_2019-10-06_1605 * Params v © Search Params pel
~ [Name Date modified Type Size ~
"’my econdPythonModule.py -10- 5 ile
Mg mys dPythonModul 2019-10-06 4:28 PM PY Fil 1KB
& pythonModule1.py 2019-10-06 3:56 PM PY File 1KB
5 &' testProcedure.ov 2019-10-06 4:05 PM PY File 1KB >

3items 1item selected 12 bytes (=

The file itself has one line, which is an import call for the built-in Python uuid library, included here only
for exemplary reasons.

mySecondPythonModule.py

import uuid

Opening the Test Procedure in the Introspect ESP Software, we see that the PythonModule class is
automatically instantiated as in the following image.

77N\

ml:r*ospecb IMPORTING MODULES INTO A TEST PROCEDURE

_/’ Gechnology

Params Leg Results
Components mySecondPythonModule properties (class: PythonModule)
globalClockConfig -
mySecondPythonModule fiehame my SecondPythonModule py
pythonModule 1 wantimportAll True
fileName
Name of the Python file. Double-click the component name to edit this file. {The editor application is specified in the
| Add ‘ | Remave ‘ ‘ Config | "ini" file by the preference "preferedPythonCodeEditor”)

We now proceed to using this module in the Test Procedure pane. Specifically, we import the module by
executing the method mySecondPythonModule.run() as before. Then, we are able to use any built-in
function within the uuid library that we have just imported. In the following example, we use it to create
a unique user ID and then print this ID to the log window.

Introspect ESP (v 3.6.79) - TestPythonModule_2019-10-06_1605 (SV2C_8C326) [=)@ ==
File Edit [ESP/SV2C 8C32G Wizards ControlPanels Tools Results Help
Params Log Results
Components mySecondPythonModule properties (class: PythonModule)
globalClockConfig . S, " M
mySecondPythonModule 'Ila:flme Al Tmy Python ey
pythonModule 1 wantimpol e
fileName
Name of the Python file. Double-click the component name to edt this file. (The editor application is speciiied in the
‘ Add | | e | | Config ‘ ".ini" file by the preference "prefemedPythonCodeEditor')
Test Procedure
1 #pythonModulsl.run()
2 #myFibonacciSeries (1000)
Hl
4 mySecondPythonModule.run()
Suser_id = uuid.uuidg()
& print (user_id)

mporting and Exporting Python Modules

INTROSPECT.CA

ml:r*ospecb IMPORTING MODULES INTO A TEST PROCEDURE

_/ Gechnology

The result of executing the above Test Procedure is shown in the following image. As can be seen, the
Python module was successfully imported without cluttering the Test Procedure window.

Introspect ESP (v 3.6.79) - TestPythonModule_2019-10-06_1605 (SV2C_8C326) (===
File Edit [ESP/SW2C_8C32G Wizards ControlPanels Tools Results Help
Farams Log Results

%% Logging to file: C:\Users\mmhaf\Documents\Introspect\Tests\Scripts\InternalTest\Pinetree
\TestPythonModule 201%-10-06_ 1605\Logs\log 201%-10-06_16€4%.txt
wwa

Ruto-connect disabled. Will need a manual connection

Starting Test "TestPythonModule 2015-10-06 1605°
2015-10-06_16€49_35

Components used by Test Procedure: [mySecondPythonModule]
IESP not used by Test Procedure
©ab207bc-£€01-4423-981b-c272355%a07f

Test finished

Test took 13 milliseconds

mporting and Exporting Python Modules

INTROSPECT.CA 9

77N\

ml:r*ospecb IMPORTING MODULES INTO A TEST PROCEDURE

_/’ Gechnology

MANUALLY IMPORTING PYTHON FILES

Apart from the PythonModule class, it is possible to manually import files into Test Procedures created
within the Introspect ESP Software. This is done using common Python language constructs. For
example, the following image illustrates importing the uuid library directly from within the Test
Procedure.

Note that the Introspect ESP Software automatically searches the following path for external Python files:
<User Account>\Documents\Introspect\PythonCode

Any file stored in this directory can simply be imported using the call

import fileName

Intraspect ESP (v 3.6.79) - TestPythonMaodule_2019-10-06_1605 (SV2C_8C326) [= ==
File Edit [ESP/SW2C _8C32G Wizards ControlPanels Tools Results Help
Params Log Results
Components mySecondPythonModule properties {class: PythonModule)
globalClockCorfig .
mySecondPythonModule lllalr:talme o= TmySe:mrliPyanNbd.le,pfy
pythonModule 1 wantimpol e
fileName
Mame of the Python file. Double-click the component name to edit this file. (The editor application is specified in the
| Add ‘ ‘ anre ‘ |C.unﬁg ‘ " ini" file by the preference "prefemedPythonCodeEditor')
Test Procedure
1 #pythonModulel. run()
2 #myFibonacciSeries (1000)
Hl
4 fmySescondPythonModuls, run ()
5 import uuid
€user_id = uuid.uuid4()
7 print(user_id)
O Run

mporting and Exporting Python Modules

INTROSPECT.CA 10

N\

inl:r‘ospecb EXPORTING A TEST PROCEDURE

_/ Gechnology

Exporting a Test Procedure

USING THE TESTASPYTHONSCRIPT COMPONENT CLASS

The Introspect ESP Software has a built-in component class called TestAsPythonScript, and this is an
automated code-generation utility that allows you to export algorithms developed inside the Introspect
ESP Software for use in external Python scripts. The advantage of this tool is that it automatically takes
care of initializing form factors, creating component contexts, and connecting to the hardware. This
section describes the basic concept of this component class.

A TestAsPythonScript component can be instantiated by adding it to the Introspect ESP Software Test
Procedure using the "Add Component” menu. Note that this component class is listed under the “utility”
category of the menu as shown in the following image.

Add Component

i i SlaveParameters A |This class prowvides the ability to create a standalone Python script from a Test.
ui When you save a Test that includes an instance of this class,
= utilty a Python script is generated in the "TestAsPythonScript” sub-folder of the Test folder.

- CommandFileRunner This script performs the operations that are done by the Test Procedure.

+Coordinator Attributes:

-CsvReader scriptName - name of the Python script

DataFile notes - notes to be put in comments at the top of the script
- DataRecord useslespHardware - does this Test use the IESP hardware?
DataStore

- EmailMessage

- Function

- HtmIReportWriter

- PassFailScript
PlotCreator

- PlotCreatorBasic
PythonModule

- ResultFolderCreator
- Shmoo
Subprocess

- TestAsComponent
TestAsPythonScript
- TestCase
TestCase Sute

- TestExporter

- Timelt
TryAltematives 4

Add Component Cancel

The TestAsPythonScript has been introduced in version 3.6.79 of the Introspect ESP Software and is
not available in earlier releases.

mporting and Exporting Python Modules

INTROSPECT.CA n

-'A
incrospect
_/ Gechnology

EXPORTING A TEST PROCEDURE

When the TestAsPythonScript component is instantiated, it is added to the Components pane just like
any other component class. However, unlike other component classes, this class does not have any
callable methods. As such, the Test Procedure pane is not modified as shown in the following screen
shot. Instead, the Introspect ESP Software uses the existence of the testAsPythonScriptl component as a
trigger to save an output Python file that can be used in external scripts. This output file is an exact
representation of the Test Procedure that was edited from within the Software.

Introspect ESP (v 3.6.79) - TestAsPythonScript_2019-10-05_2241 (SV4E_2L2G_MIPI_I3C_EXERCISER) [=][@][=]
File Edit IESP/MIPLI3C_EXERCISER ~ Wizards ControlPanels Tools Results Help
Params Log Results
Components | testAsPythonScript 1 properties (class: TestAsPythonScript)
idcDataCapture1 -
masterDevice aonfhane mysciipt py
masterParams1 notes
slaveParams1 useslespHardware True
testAsPythonSeript1
scriptName
Desired name for the Python script
Add Remove Config
Test Procedure
1 masterDevice.setup()
2 i3cDataCapturel.start()
(OB Run

The automatically generated code for the above Test Procedure is shown in the next page. As can be
seen, all aspects of external instantiation of Introspect components are taken care of automatically.

mporting and Exporting Python Modules

INTROSPECT.CA 12

incrospect

technology

myScript.py

Generated via SvtTestAsPythonScript from Test 'TestAsPythonScript 2019-10-
05 2241"

2019-10-05_2241

from dftm.svt import initFormFactor, createComponentContext, errorMsg
import dftm.fileUtil as fileUtil

formFactorName = 'SV4E 2L2G MIPI I3C EXERCISER'
iesp = initFormFactor (formFactorName)

currentFolder = fileUtil.getCurrentFolder ()

svtContextFolderName = 'myscriptFolder'

svtContextFolderPath = fileUtil.joinPaths (currentFolder, svtContextFolderName)
svtContext = createComponentContext (svtContextFolderPath)

svtNamesDict = svtContext.getNamesDict ()

globalsDict = globals ()

globalsDict.update (svtNamesDict)

connected = iesp.connectToHardware ()
if not connected:
errorMsg('Failed to connect to IESP hardware')

Components:

i3cDataCapturel = svtContext.createComponent ('SvtMipiI3cDataCapture')
masterParamsl = svtContext.createComponent ('SvtMipiI3cMasterParameters')
slaveParamsl = svtContext.createComponent ('SvtMipiI3cSlaveParameters')
masterDevice = svtContext.createComponent ('SvtMipiI3cDevice')
masterDevice.masterModeParams = masterParamsl
masterDevice.slaveModeParams = slaveParamsl
masterDevice.startupState = 'master'

def testProcedure():
svtContext.initForRun() # re-init components for this run
svtContext.createRunResultFolder () # create a dated sub-folder for results

masterDevice.setup ()
i3cDhDataCapturel.start ()

if name == ' main ':

testProcedure ()

-A
incrospect
_/’ Gechnology

EXPORTING A TEST PROCEDURE

MANUALLY EXPORTING COMPONENT CLASSES

Introspect ESP component classes can be instantiated in external Python scripts by following the
instructions in the application note:

UsingComponentsinExternalPythonScripts.pdf

This application note is included in the Doc folder of the Introspect ESP Installation.

Importing and Exporting Python Modules

INTROSPECT.CA 14

incrospect

technology

Revision Number History Date

1.0 Document Release October 7, 2019

The information in this document is subject to change without notice and should not be construed as a
commitment by Introspect Technology. While reasonable precautions have been taken, Introspect
Technology assumes no responsibility for any errors that may appear in this document.

© Introspect Technology, 2019
Published in Canada on October 7, 2019

INTROSPECT.CA

