
 © Introspect Technology, 2019

Published in Canada on October 7, 2019

Introduction

Importing Modules into a Test Procedure

Using the PythonModule Component Class ... 3

Manually Importing Python Files ... 10

Exporting a Test Procedure

Using the TestAsPythonScript Component Class ... 11

Manually Exporting Component Classes ... 14

It is sometimes useful to import external Python modules into Test Procedures developed within the

Introspect ESP Software. Similarly, it might be useful to export test methods or entire Test Procedures

from the Introspect ESP Software for use in external Python scripts. This Technical Insights brief describes

ways to achieve both of these requirements.

The Introspect ESP Software has a built-in component class called PythonModule, and this is the

recommended way of importing external Python functions or modules into Test Procedures being

executed from within the Introspect ESP Software. This section describes the basic concept of this

component class and illustrates real-life examples of how it is used.

A PythonModule component can be instantiated by adding it to the Introspect ESP Software Test

Procedure using the “Add Component” menu. Note that this component class is listed under the “utility”

category of the menu as shown in the following image.

When the PythonModule component is instantiated, the Introspect ESP Software takes a couple of

automated actions. First, it adds the module to the Components tab as is the case with all other

instantiated components. Second, it creates a blank .py file inside the Params sub-folder of the Test

Procedure folder in Windows. The name of this file matches the name of the component class that was

instantiated. That is, referring to the two following images, the software creates a module called

pythonModule1 and creates a corresponding file called pythonModule1.py.

By default, the pythonModule1.py file is blank, and the Introspect ESP software typically launches a code

editor to allow the user to edit this file. This is when external code can be added. In the following

example, we show two function declarations: one to create a custom print method and the second to

compute a Fibonacci sequence. As can be seen, any Python code can be placed in this file, including

function declarations, function calls, and library imports.

After saving the pythonModule1.py file, we can go back to the Introspect ESP Software and never have

to worry about the source code anymore. Instead, we import the file’s contents by adding the call

pythonModule1.run() in the main Test Procedure pane. Once the file is imported this way, we can call

any function that was declared inside it. For example, the following image shows how to call the

Fibonacci Series calculator that was declared in the above example; and the image after it shows the

execution log of the Test Procedure, confirming that the external Python file was indeed imported and

that the Fibonacci Series function was executed.

pythonModule1.py
#!/usr/bin/env python

def myprint():

 print("hello")

def myFibonacciSeries(n):

 a, b = 0, 1

 while a < n:

 print(a, end=' ')

 a, b = b, a+b

 print()

If you want to import an already existing Python file without having to paste its contents into a blank

file, then you can simply place this file in the Params sub-folder of your target Introspect ESP Software

folder. When you do so, the Introspect ESP Software automatically creates an instance of the

PythonModule component class. In the following example, we place a file called

mySecondPythonModule.py in the Params folder as shown in the following image.

The file itself has one line, which is an import call for the built-in Python uuid library, included here only

for exemplary reasons.

Opening the Test Procedure in the Introspect ESP Software, we see that the PythonModule class is

automatically instantiated as in the following image.

mySecondPythonModule.py
import uuid

We now proceed to using this module in the Test Procedure pane. Specifically, we import the module by

executing the method mySecondPythonModule.run() as before. Then, we are able to use any built-in

function within the uuid library that we have just imported. In the following example, we use it to create

a unique user ID and then print this ID to the log window.

The result of executing the above Test Procedure is shown in the following image. As can be seen, the

Python module was successfully imported without cluttering the Test Procedure window.

Apart from the PythonModule class, it is possible to manually import files into Test Procedures created

within the Introspect ESP Software. This is done using common Python language constructs. For

example, the following image illustrates importing the uuid library directly from within the Test

Procedure.

Note that the Introspect ESP Software automatically searches the following path for external Python files:

<User Account>\Documents\Introspect\PythonCode

Any file stored in this directory can simply be imported using the call

import fileName

The Introspect ESP Software has a built-in component class called TestAsPythonScript, and this is an

automated code-generation utility that allows you to export algorithms developed inside the Introspect

ESP Software for use in external Python scripts. The advantage of this tool is that it automatically takes

care of initializing form factors, creating component contexts, and connecting to the hardware. This

section describes the basic concept of this component class.

A TestAsPythonScript component can be instantiated by adding it to the Introspect ESP Software Test

Procedure using the “Add Component” menu. Note that this component class is listed under the “utility”

category of the menu as shown in the following image.

The TestAsPythonScript has been introduced in version 3.6.79 of the Introspect ESP Software and is

not available in earlier releases.

When the TestAsPythonScript component is instantiated, it is added to the Components pane just like

any other component class. However, unlike other component classes, this class does not have any

callable methods. As such, the Test Procedure pane is not modified as shown in the following screen

shot. Instead, the Introspect ESP Software uses the existence of the testAsPythonScript1 component as a

trigger to save an output Python file that can be used in external scripts. This output file is an exact

representation of the Test Procedure that was edited from within the Software.

The automatically generated code for the above Test Procedure is shown in the next page. As can be

seen, all aspects of external instantiation of Introspect components are taken care of automatically.

myScript.py
Generated via SvtTestAsPythonScript from Test 'TestAsPythonScript_2019-10-

05_2241'

2019-10-05_2241

from dftm.svt import initFormFactor, createComponentContext, errorMsg

import dftm.fileUtil as fileUtil

formFactorName = 'SV4E_2L2G_MIPI_I3C_EXERCISER'

iesp = initFormFactor(formFactorName)

currentFolder = fileUtil.getCurrentFolder()

svtContextFolderName = 'myscriptFolder'

svtContextFolderPath = fileUtil.joinPaths(currentFolder, svtContextFolderName)

svtContext = createComponentContext(svtContextFolderPath)

svtNamesDict = svtContext.getNamesDict()

globalsDict = globals()

globalsDict.update(svtNamesDict)

connected = iesp.connectToHardware()

if not connected:

 errorMsg('Failed to connect to IESP hardware')

#---

Components:

#---

i3cDataCapture1 = svtContext.createComponent('SvtMipiI3cDataCapture')

masterParams1 = svtContext.createComponent('SvtMipiI3cMasterParameters')

slaveParams1 = svtContext.createComponent('SvtMipiI3cSlaveParameters')

masterDevice = svtContext.createComponent('SvtMipiI3cDevice')

masterDevice.masterModeParams = masterParams1

masterDevice.slaveModeParams = slaveParams1

masterDevice.startupState = 'master'

#---

#---

def testProcedure():

 svtContext.initForRun() # re-init components for this run

 svtContext.createRunResultFolder() # create a dated sub-folder for results

 masterDevice.setup()

 i3cDataCapture1.start()

#---

if __name__ == '__main__':

 testProcedure()

#---

Introspect ESP component classes can be instantiated in external Python scripts by following the

instructions in the application note:

UsingComponentsInExternalPythonScripts.pdf

This application note is included in the Doc folder of the Introspect ESP Installation.

 © Introspect Technology, 2019

Published in Canada on October 7, 2019

1.0 Document Release October 7, 2019

The information in this document is subject to change without notice and should not be construed as a

commitment by Introspect Technology. While reasonable precautions have been taken, Introspect

Technology assumes no responsibility for any errors that may appear in this document.

