
 © Introspect Technology, 2019

Published in Canada on July 10, 2019

Technical Insights

Introspect Components... 3

xlwings Installation .. 3

Using xlwings .. 5

Python Script ... 6

User Interface .. 7

You may want to use the Introspect components within an Excel Worksheet in order to control an

Introspect device. This document illustrates how you can achieve this by demonstrating how to generate

a simple pattern using an SV3C-DPTX MIPI D-PHY Generator.

Introspect components are written in Python; however, Excel macros do not natively support Python

functions. Therefore, we propose to use the xlwings Python package. xlwings comes with an Excel add-in

that allows the import of Python scripts, which can in turn be used as VBA Excel macros. For more

information on xlwings and its functionality, please consult the xlwings documentation through the

following link: https://docs.xlwings.org/en/stable/index.html#

To be able to interact with the Introspect hardware using Excel, the Introspect ESP Software should be

installed on the machine. The needed components are under the IntrospectESP_<version>\SvtPython

folder of your installation.

Note: If you have previously installed xlwings on your machine, this procedure will override it.

In order to use Python scripts as Excel VBA macros, we first need to add the xlwings Python package to

the Introspect ESP Python environment. To do so, download the “introspect_xlwings.7z” from Introspect

and extract its “wheel” folder to your IntrospectESP\PythonEnv installation folder (e.g.

C:\Introspect\IntrospectESP_<version>\PythonEnv). Then, open a Windows command prompt terminal

and enter the following commands:

cd C:\[Your IntrospectESP Installation Folder]\PythonEnv
python.exe -m pip install wheel
python.exe -m pip install .\wheel\comtypes-1.1.7-py3-none-any.whl
python.exe -m pip install xlwings

https://introspect.ca/product/sv3c-dptx/
https://docs.xlwings.org/en/stable/index.html

Now that we have added the xlwings package to the Introspect ESP Python Environment, we need to

install the xlwings Excel add-in.

If you have previously installed xlwings on your computer, you will need to run the following command.

Otherwise, you can skip this step:

To install the xlwings Excel add-in, make sure Excel is closed and enter the following command in the

previously opened Windows command prompt:

You can now close the Windows command prompt terminal. Open Excel, create a new Worksheet, and

make sure the xlwings ribbon has been added to Excel, as below:

In order to use the Introspect ESP Python environment, we need to point xlwings to it. To do so, click the

xlwings ribbon in Excel and add the following to the “Interpreter” field:

xlwings addin remove

.\Scripts\xlwings.exe addin install

C:\[Your IntrospectESP Installation Folder]\PythonEnv\python.exe

We also need to point xlwings to the Python components used by the Introspect ESP Software. For this,

we need to add the following to the “PYTHONPATH” field:

Finally, we need to allow xlwings to access to the VBA project object model. Open Excel, then navigate

to File>Options>Trust Center>Macro Settings and tick the “Trust access to the VBA project object

model” box.

To better illustrate the use of xlwings, we first present a basic “Hello World” example. This example uses

a macro enabled Excel Worksheet “hello.xlsm” along with an external Python script “hello.py”:

To import the “hello()” function into Excel, open “hello.xlsm”, click the xlwings ribbon and click the

“Import functions” button. Now, we need to add xlwings to the VBA Reference. To do so, open the

Developer Console (Alt-F11), click on Tools>References and select xlwings from the list.

You can test the macro by typing adding a macro button using the “hello” macro we just added. When

the button is clicked, cell A1 will change its value to “Hello!”

C:\[Your IntrospectESP Installation Folder]\SvtPython

hello.py
import xlwings as xw

@xw.func
def hello()
 wb = xw.Book.caller() #Gets the name of the WorkBook
 wb.sheets[0].range('A1').value = "Hello!" #Prints Hello! to cell A1

Both files have to be located in the same directory and have the same name in order to use the

“Import functions” functionality of xlwings. If both files do not have the same name, or if you need

multiple Python scripts to be supported by xlwings, add their name to the “UDF Modules” field of

the xlwings Excel ribbon.

In order for the Introspect hardware to communicate with the Introspect ESP Software, you need to

initialize the necessary components for your script. Below is an example of how prepare for the

generation of a pattern on the Introspect SV3C-DPTX MIPI D-PHY Generator:

introspect.py
import xlwings as xw

import sys, os

from dftm.svt import initFormFactor, createComponentContext

formFactorName = 'SV3C_4L6G_MIPI_DPHY_GENERATOR' #To be changed depending on which form factor

you use

iesp = initFormFactor(formFactorName)

svtContext = createComponentContext()

svtNamesDict = svtContext.getNamesDict()

globalClockConfig = svtContext.createComponent("SvtMipiClockConfig")

dphyCsiColorBarPattern1 = svtContext.createComponent("SvtMipiDphyCsiColorBarPattern")

dphyParameters1 = svtContext.createComponent("SvtMipiDphyParameters")

mipiDphyGenerator1 = svtContext.createComponent("SvtMipiDphyGenerator")

mipiDphyGenerator1.dphyPattern = dphyCsiColorBarPattern1

mipiDphyGenerator1.dphyParams = dphyParameters1

def get_workbook_name():

 wb = xw.Book.caller()

 return wb

@xw.sub

def connectToIESP():

 connected = iesp.connectViaFtdi()

@xw.sub

def disconnectFromIESP():

 # disconnect

 iesp.disconnect()

@xw.sub

def setupTxChannel():

 mipiDphyGenerator1.setup()

@xw.sub

def startCtsTest():

 wb = get_workbook_name()

 lpVoltageHigh = wb.sheets[0].range('B16').value

 lpDataHighVoltages = [lpVoltageHigh]

 setupTxChannel()

Before creating the components, an initialization is needed (initializing the form factor and creating the

context for the Introspect components); please refer to the Using Introspect Components in IronPython

Scripts article for further explanation.

In the “introspect.py” file, we define the Introspect components that will be used for our test. Note that

this script is an illustration. You may need to modify it or create your own script depending on your

testing requirements. All the available components are defined and documented under the

Introspect<version>\Doc\<FormFactor>\svt.html. You can also access this file by choosing the

"Components classes" under the Help menu in the Introspect ESP GUI.

We illustrate how Introspect components and testing procedures can be called within Excel by

generating a pattern at different LP levels.

The main user interface looks like below:

file:///C:/wiki/spaces/KB/pages/37912704/Using+Introspect+Components+in+IronPython+Scripts
file:///C:/wiki/spaces/KB/pages/37912704/Using+Introspect+Components+in+IronPython+Scripts

The xlwings Python package allows for the easy integration of Python scripts to VBA macros. By

including the required software components and by defining functions in the “introspect.py” script, the

user can call some pre-built Introspect Python functions to control the Introspect ESP instrument. For

example, if the user wants to setup the generator, he can define a function that calls the

mipiDphyGenerator1.setup() method. Note that "mipiDphyGenerator1" is the object name we set in the

"introspect.py" script when creating a SvtMipiDphyGenerator component. Similarly, one can change the

default parameters of the generator and then do mipiDphyGenerator1.update(). In this example, we

change the LP high voltage for all data lanes to 800 mV. At the end, we perform a "reset" to the

generator. Once the functions have been defined in the “introspect.py” Python script, the user can, for

example, add a button to the Excel Worksheet to call those functions in a very straightforward way.

